© Springer-Verlag 1999

## Short note

## (EC+ $\beta$ <sup>+</sup>) decay of <sup>130</sup>Pm and <sup>128</sup>Pr

Xie Yuanxiang<sup>1</sup>, Xu Shuwei<sup>1</sup>, Li Zhankui<sup>1</sup>, Yu Yong<sup>1</sup>, Pan Qiangyan<sup>1</sup>, Wang Chunfang<sup>1</sup>, Zhang Tianmei<sup>1</sup>, Long Guilu<sup>2</sup>, Li Yansong<sup>2</sup>

<sup>1</sup> Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, P.R. China

Received: 20 April 1999 / Revised version: 20 May 1999 Communicated by J. Ästyö

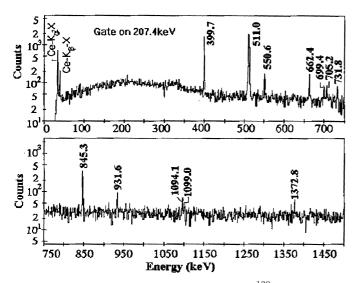
**Abstract.** <sup>130</sup>Pm and <sup>128</sup>Pr were produced by irradiation of <sup>96</sup>Ru with <sup>36</sup>Ar, and studied using a He-jet recoil tape transport system. Based on X- $\gamma$  and  $\gamma$ - $\gamma$  coincidence measurements, the (EC+ $\beta$ <sup>+</sup>) decay scheme of <sup>130</sup>Pm was proposed for the first time and the (EC+ $\beta$ <sup>+</sup>) decay scheme of <sup>128</sup>Pr was revised.

**PACS.** 23.40.-s  $\beta$  decay; double  $\beta$  decay; electron and muon capture – 23.20.Lv Gamma transitions and level energies – 21.60.Cs Shell model

The  $\beta$ -delayed protons from  $^{130}\mathrm{Pm}$  and  $^{128}\mathrm{Pr}$  decays were measured with half-lives 2.2(6)s and 3.2(5)s [1], respectively. The level schemes of their daughter nuclei  $^{130}\mathrm{Nd}$  and  $^{128}\mathrm{Ce}$  obtained by means of in-beam gamma study have been reported [2,3]. However, the (EC+ $\beta^+$ ) decay scheme of  $^{130}\mathrm{Pm}$  has not been proposed so far. Although a simple (EC+ $\beta^+$ ) decay scheme of  $^{128}\mathrm{Pr}$  with six observed  $\gamma$  rays was published in 1988 [4], some of the low-lying states of  $^{128}\mathrm{Ce}$  in the decay scheme are not consistent with the level scheme of  $^{128}\mathrm{Ce}$  [3]. Therefore, the revision of the (EC+ $\beta^+$ ) decay scheme of  $^{128}\mathrm{Pr}$  is necessary.

The experiment was carried out at the SFC accelerator of IMP, Lanzhou, China. A 220-MeV-<sup>36</sup>Ar<sup>11+</sup> beam from the cyclotron entered a target chamber filled with 1-atm. helium, passing through a 1.94mg/cm<sup>2</sup> Havar window and 7-cm helium gas, and finally bombarded a 2.8mg/cm<sup>2</sup> <sup>96</sup>Ru target (94% enriched) with a 0.3mg/cm<sup>2</sup> aluminum backing after losing  $\sim 40 \text{MeV}$  in the window and the helium gas. The beam intensity was about  $0.5e\mu A$ . We used a He-jet in combination with a tape-transport system to move the radioactivity into a shielded counting room. PbCl<sub>2</sub> was used as aerosol at  $430^{\circ}$ C. The  $\gamma$  rays from the reaction products were measured up to 2.0MeV using two coaxial HpGe(GMX) detectors. A HpGe planar detector was used for X-ray measurements. The  $\gamma$ - $\gamma$ -t or X- $\gamma$ -t coincidence events were collected event-by-event on magnetic tapes. The observed intense  $\gamma$  lines of <sup>130</sup>Pm (<sup>128</sup>Pr) were assigned by the coincidence measurements with Nd- $K_{\alpha}X(\text{Ce-}K_{\alpha}X)$  ray as well as based on the level scheme of  $^{130}\text{Nd}$  [2] ( $^{128}\text{Ce}[3]$ ). The observed weak  $\gamma$  lines of  $^{130}\text{Pm}$ (128Pr) were assigned by the coincidence measurements

Table 1. The  $\gamma\text{-transitions}$  and their coincidence relationships in the decay of  $^{130}$  Pm


| $E_{\gamma} \; (keV)$   | ${ m I}_{\gamma}$ | Coincident relations                      |
|-------------------------|-------------------|-------------------------------------------|
| 158.9(2)                | 100*              | 326.3, 454.2, 547.2, 787.4, 793.4, 1026.2 |
| 326.3(3)                | 76(3)             | 158.9, 454.2, 547.2                       |
| 454.2(3)<br>547.2(4)    | 44(3) $13(5)$     | 158.9, 326.3<br>158.9, 326.3              |
| 787.4(4)                | 7(6)              | 158.9                                     |
| $793.4(4) \\ 1062.2(4)$ | $7(5) \\ 9(8)$    | 158.9<br>158.9                            |

<sup>\*</sup> Including correction of internal conversion electron

with the X ray and with already assigned intense  $\gamma$  rays of  $^{130}\mathrm{Pm}$  (  $^{128}\mathrm{Pr}).$ 

<sup>130</sup>**Pm**: From the time spectra of intense  $\gamma$  lines of <sup>130</sup>Pm, the weighted average half-life value of <sup>130</sup>Pm was determined to be 2.6(2)s, which is 0.4 s longer than previous result [1]. The observed  $\gamma$ -ray intensities mainly from  $\gamma$ -singles measurements and the  $\gamma$ - $\gamma$  coincidence relations in <sup>130</sup>Pm decay are listed in Table 1, which leads us to suggest the decay scheme shown in Fig. 1. The Q<sub>EC</sub> value is a systematic prediction given by Audi et al. [5]. In Fig. 1 besides the known 2<sup>+</sup>,4<sup>+</sup> and 6<sup>+</sup> levels of the ground band [2], four new levels of <sup>130</sup>Nd were found at the energies of 946.3, 952.3, 1032.4 and 1185.1 keV, respectively. According to the upper limits of the side feeding to each level (I<sup>u,l</sup><sub>EC+β+</sub>) by (EC+β+) decay in Fig. 1 the lower limits of the log ft values (log ft<sup>l,l</sup>) shown in the right part of

<sup>&</sup>lt;sup>2</sup> Department of Physics, Tsinghua University, Beijing 100084, P.R. China



**Fig. 1.** Proposed decay scheme of  $^{130}\mathrm{Pm}$ 

Fig.1 were calculated with the table of Gove and Martin [6]. Based on the selection rule of  $\beta$  decay, a possible assignment of the ground-state spin and parity of  $^{130}\mathrm{Pm}$  is 5<sup>+</sup>. However, if any intense  $\gamma$  ray with the energy higher than 2.0MeV deexcited to 485.2-keV 4<sup>+</sup> state or 939.4-keV 6<sup>+</sup> state was missing, 6<sup>+</sup> or 4<sup>+</sup> could also be assigned to the ground state of  $^{130}\mathrm{Pm}$ . The assignment of 6<sup>+</sup> is consistent with the prediction given by macroscopic-microscopic model of Möller et al. [7], which is composed of a  $\nu7/2[523]$  and a  $\pi5/2[532]$  quasi-particles.

 $^{128}$ **Pr:** The weighted average half-life of  $^{128}$ Pr was determined to be 2.8(1)s, which is consistent with previous results [1,4] within experimental errors. The observed  $\gamma$ -ray intensities and the  $\gamma$ - $\gamma$  coincidence relations in  $^{128}$ Pr decay are listed in Table 2. The proposed (EC+ $\beta$ <sup>+</sup>) decay scheme of  $^{128}$ Pr is shown in Fig. 2. The  $Q_{EC}$  value is a sysmatic prediction given by Audi et al. [5]. In the low-energy

Table 2. The  $\gamma\text{-transitions}$  and their coincidence relationships in the decay of  $^{128}\mathrm{Pr}$ 

| $E_{\gamma} \text{ (keV)}$ | ${ m I}_{\gamma}$ | Coincident relations        |
|----------------------------|-------------------|-----------------------------|
| 207.4(2)                   | 100*              | 399.7, 550.6, 662.4, 699.4, |
|                            |                   | 705.2, 731.8, 845.3, 931.6, |
|                            |                   | 1094.1, 1099.0, 1372.8      |
| 399.7(3)                   | 26(1)             | 207.4, 550.6, 699.4, 705.2, |
|                            |                   | 731.8, 1094.1, 1372.8       |
| 550.6(3)                   | 3.4(3)            | 207.4, 399.7, 731.8         |
| 662.4(4)                   | 4.8(2)            | 207.4                       |
| 669.4(4)                   | 1.1(5)            | 207.4, 399.7                |
| 705.2(4)                   | 1.5(4)            | 207.4, 399.7                |
| 731.8(4)                   | 1.8(4)            | 207.4, 399.7, 550.6         |
| 845.3(3)                   | 11.2(2)           | 207.4                       |
| 931.6(4)                   | 4.0(3)            | 207.4                       |
| 1094.1(4)                  | 1.4(4)            | 207.4, 399.7                |
| 1099.0(4)                  | 2.9(4)            | 207.4                       |
| 1372.8(4)                  | 2.4(4)            | 207.4, 399.7                |

<sup>\*</sup> Including correction of internal conversion electron

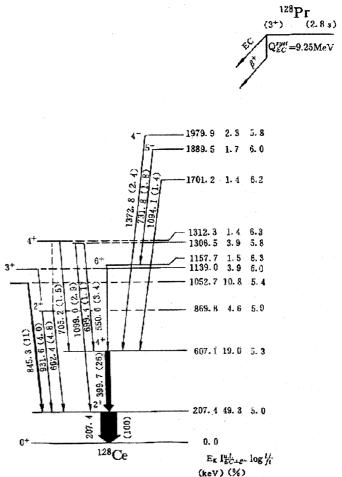
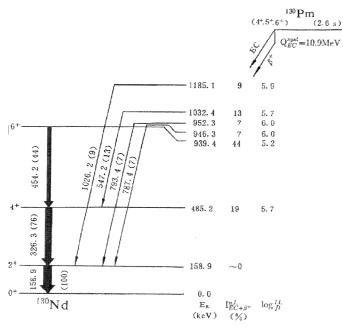




Fig. 2. Proposed decay scheme of <sup>128</sup>Pr

region of <sup>128</sup>Ce, the bandheads of band 1, 2, 6 and 8 in reference [3] were found besides the three lowest-energy members of the yrast band. A new low-lying state with the energy of 1052.7keV deexcited to the lowest-energy 2<sup>+</sup> state via an intense 845.3-ke V<br/>  $\gamma$  ray and another new one with the energy of 1306.5keV were observed. However, we could not see any indication of 592-, 799- and 873-keV  $\gamma$ rays reported in reference [4]. For an example, the 592- and 799-keV  $\gamma$  rays could not be seen in the coincident  $\gamma$  spectrum gated on 207.4-keV  $\gamma$  ray shown in Fig. 3. Based on the selection rule of  $\beta$  decay, we are not able to assign the ground-state spin and parity of <sup>128</sup>Pr to 5<sup>+</sup>, which as predicted by Möller et al. [7] is composed of a  $\nu 7/2[523]$  and a  $\pi 3/2[541]$  quasi-particles. A possible assignment of the ground-state spin and parity of <sup>128</sup>Pr could be 3<sup>+</sup> because the lower limits of  $\log ft$  value to the  $2^+$ ,  $3^+$ , or 607.1keV 4<sup>+</sup> states in <sup>128</sup>Ce are less than 6.00. In a projected shell model [8] calculation, by taking large deformations  $\varepsilon_2$ =0.370 and  $\varepsilon_4$ =0.0228 and slightly weak pairing parameters  $G_1=19.24 \text{MeV}$  and  $G_2=13.86 \text{MeV}$ , the ground-state spin and parity of <sup>128</sup>Pr was calculated to be 3<sup>+</sup> composed of a  $\nu 1/2[541]$  and a  $\pi 5/2[532]$  quasi-particles.



**Fig. 3.** Gamma-ray spectrum gated by 207.4-keV  $\gamma$  ray following the decay of  $^{128}\mathrm{Pr}.$  The coincident peaks assigned to  $^{128}\mathrm{Pr}$  are marked with their energies in keV

This work was supported by the National Natural Science Foundation of China(19775056) and Chinese Academy of Sciences.

## References

- P.A. Wilmarth, J.M. Nitschke, P.K. Lemmertz et al., Z. Phys. A321, 179, (1985)
- 2. J.M. Nitschke, P.A. Wilmarth, J. Gilat et al., Proc. of 5th Inter. Conf. on Nuclei
- 3. Far From Stability, Rosseau Lake, 1987, edited by I. Towner (1988), p.697
- R. Moscrop, M. Campbell, W. Gelletly et al., Nucl. Phys. A499, 565 (1989)
- J. Lu, J. Mukai, T. Komatsubara et al., Nucl. Phys. A607, 327 (1996)
- D. Barneoud, J. Blachot, J. Genevey et al., Z. Phys. A330, 341 (1988)
- G.Audi, O.Bersillon, J.Blachot et al., Nucl. Phys. A624, 1 (1997)
- N.B. Gove and M.J. Martin, Nucl. Data Tables, 10, 206 (1971)
- 9. P. Möller, J.R. Nix, and K.-L. Kratz, At. Data and Nucl. Data Tables, 66, 131 (1997)
- 10. K. Hara and Yang Sun, Int. J. Mod. Phys., E4, 637 (1995)